NUMERICAL STUDY OF THE EFFECT OF MUTUAL ORIENTATION OF OLIGOMER MACROMOLECULES ON THEIR DESTRUCTION UNDER ULTRASONIC CAVITATION

R.N. Golykh, V.N. Khmelev, V.D. Minakov, I.A. Manyakhin, D.A. Ilchenko
DOI: 10.25699/SSSB.2021.40.6.042 Download PDF
Abstract: The study of the mechanism of destruction of macromolecules under the action of ultrasonic cavitation is an important task. To date, the mechanism of destruction of macromolecules is known, based on the fact that microscopic zones of extremely high pressures are created in the conditions of ultrasonic cavitation, in which the probability of acts of rupture of the macromolecule increases. A rupture occurs if and only if the relative velocity when macromolecules collide with each other exceeds a critical value. Due to cavitation, the proportion of macromolecules whose relative velocity exceeds the critical value increases. The article describes the proposed numerical model, which is designed to identify the molecular weights of the fragments formed during collision. A method is proposed to reduce the number of unknown functions by 4 times compared to the complete system of equations of mechanics of monomeric links, based on symmetry in the proposed formulation of the problem. The effect of the mutual orientation of oligomer macromolecules on the number of fragments formed has been numerically investigated. The results obtained can serve as a guideline for the development of a macroscopic kinetic model of the evolution of the fractional composition of monomeric units (the evolution of concentrations of monomeric units of various typical weights).
Index terms: macromolecule, breakup, cavitation.

Contacts

Russia, 659305, Altai region, Biysk,
Trofimova Street, 27, room 404B
Tel. + 7-923-162-93-27
(executive secretary -
Golykh Roman Nikolayevich)
e-mail: info@s-sibsb.ru

The certificate